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In this lecture we will see an algebraic approach toward analyzing matching in graph. In first
section we will have a quick recap on properties of characteristic polynomials, then we will define
matching polynomials. Finally, we will use interlacing families to construct Ramanujan graphs of
all degrees.

1 Characteristic polynomial of a graph

Definition 1 (Characteristic polynomial) Characteristic polynomial of a graph G with adja-
cency matrix A is defined as, p(G, x) = det(xI −A).

We now just quickly remind properties of characteristic polynomials. Here, let λ1 ≥ ... ≥ λn be
eigenvalues of adjacency matrix A of graph G of size n. Let ∆ be the maximum degree of graph.

1. det(xI −A) =
∏

(x− λi), where λi are eigenvalues of A.

2. If A is a symmetric matrix then its eigenvalues are real. Hence, characteristic polynomial of
a graph are real-rooted.

3. |λi| ≤ ∆, ∀i ≤ n.

4. (Exercise)
√

∆ ≤ max1≤i≤n(λi) ≤ ∆.

5. (Exercise) Let G be a tree then, max1≤i≤n(λi) ≤ 2
√

∆− 1.

One way to connect combinatorial properties of adjacency matrix and its continuous nature is
through the following formulae:

tr(Ak) =
n∑
i=1

λki .

Now, let ais be coefficients of characterisitc polynomial, i.e. det(xI − A) =
∑n

k=0 akx
k. Then by

first property we have ak =
∑

S:|S|=n−k(−1)n−k
∏
i∈S λi.

For any real-rooted polynomials we know that ais are log-concave. Which means a2k ≥ ak−1ak+1.

2 Matching polynomial

Let µ(G, k) be the number of matchings of size k in graph G. We also define µ(G, 0) = 1.

Definition 2 Define matching polynomial of graph G as m(G, x) =
∑n/2

k=0(−1)kµ(G, k)xn−2k.

One reason that we define matching polynomial as above rather than simply defining its generating
function (

∑
µ(G, k)xk) is that historically physicistsused these polynomials to compute stability of

molecules!!



Proposition 3 Let u and v be any connected vertices in G. Let G−u−v if made of G by removing
u and v and G− {u, v} is G without the edge between u and v. Then we have:

µ(G, k) = µ(G− u− v, k − 1) + µ(G− {u, v}, k)

Proof: In counting matchings either we use the edge between u and v and find k−1 other matchings
from rest of the vertices or we do not use this edge at all. 2

Corollary 4 m(G, x) = m(G− {u, v}, x)−m(G− u− v, x).

With similar analysis we have the following proposition.

Proposition 5 If u is a vertex of the graph and v1, ..., vd are its neighbors then:

µ(G, k) = µ(G− u, k − 1) +
d∑
i=1

µ(G− u− vi, k − 1)

Corollary 6 m(G, x) = xm(G− u, x)−
∑d

i=1m(G− u− vi, x).

Proposition 7 Let G1 and G2 be components of G then m(G) = m(G1)m(G2)

Lemma 8 If G is a forest then det(xI −A) = m(G, x)

Proof: Since G is a forest there exist a node v with degree exactly 1. WLOG first node is adjacent
only to second node. Then expand det(xI −A) with respect to first row.

det(xI −A) = det


x 1 0 . . . 0
1 x . . .

0
...

. . .
...
0


= xdet(xIn−1 −A{1})− det(xIn−2 −A{1,2}),

where AS be the matrix made of A removing rows and columns whose indices are in S.
2

Corollary 9 Matching polynomials of forests are real-rooted.

In the rest of this section we want to prove that matching polynomials of all graphs are real-
rooted. For this purpose we define path-tree graphs.

Definition 10 (path trees) We call T (G, v) the path-tree of graph G w.r.t v, where vertices of
T (G, v) are simple paths in G starting from v. Two vertices p1 and p2 are connected if corresponding
path to p1 is a prefix of p2 and |p1| = |p2| − 1.

Theorem 11 Let G be a graph and u be any vertex in G then:

m(G)

m(G− u)
=

m(T (G, u))

m(T (G, u)− u)
.

Also, m(G) divides m(T (G, u)).



Proof: We prove the theorem by induction on the number of vertices. Let v1, . . . , vd be neighbors
of u in G. For simplicity, by T we mean T (G, u). Note that T is a tree rooted in u, and u is
connected to subtrees T1, . . . , Td, where Ti is rooted on the path u − vi. Now, we rewrite some
identities by previous propositions.

1. m(T ) = xm(T − u)−
∑d

i=1m(T − u− vi), by Corollary 6.

2. m(T − u) =
∏d
i=1m(Ti), by Proposition 7.

3. m(T − u− vi) = m(Ti − vi)
∏
i 6=jm(Tj), by Proposition 7.

4. m(G) = xm(G− u)−
∑k

i=1m(G− u− vi) by Corollary 6.

5. m(G−u)
m(G−u−vi) = m(Ti)

m(Ti−vi) , by induction hypothesis.

Now, divide both sides of equation 4 by m(G− u) and use equation 5 we have

m(G)

m(G− u)
= x−

∑ m(Ti)

m(Ti − vi)
.

Also, divide both sides of equation 1 by m(T − u) and use equation 2 and 3.

m(T )

m(T − u)
= x−

∑ m(T − u− vi)∏d
i=1m(Ti)

= x−
∑ m(Ti)

m(Ti − vi)
.

So, m(G)
m(G−u) = m(T )

m(T−u) . Now, to prove that m(G) divides m(T ) we again use induction and use

the fact that m(T )
m(G) = m(T−u)

m(G−u) . RHS is a simple polynomial by induction hypothesis so the proof is
complete.

2

Corollary 12 All the roots of m(G) are real and they are at most 2
√

∆− 1.

Corollary 13
µ(G, k) ≥ µ(G, k − 1)µ(G, k + 1)

One can show that finding maximum root of matching polynomial of G is related to finding number
of closed walks of in path-tree graph of G.

Problem 1 (Open) Give a PTAS for counting the number of closed walks of length k, starting
from u in T (G, u).

3 Constructing bipartite Ramanujan graphs

Informally Ramanujan graphs are best possible expanders. Formally we will define them as follow:

Definition 14 (Ramanujan Graphs) G is Ramanujan if it is d−regular graph and

max
|λ|<d

|λ| ≤ 2
√
d− 1.



In fact, 2
√
d− 1 is the best possible upper bound we can get. It was shown by Alon and Boppana

that for and ε > 0 and for sufficiently large n, non-trivial eigenvalue of d−regular graphs of size n
has value ≥ 2

√
d− 1− 1.

We will breifly go over the proof of Marcus, Spielman and Srivastava on the existence of infinte
sequence of bipartite Ramanujan graphs.

Theorem 15 For every d ≥ 3, there exists an infinite sequence of d−regular bipartite Ramanujan
graphs.

Proof: Given a Ramanujan graph G we will double its size by using a process called 2-lift process,
and we will show that the graph remains Ramanujan after the amplification.

Definition 16 (2-lift process) Given a graph G(V,E) construct graph H where vertices of H
are 2 copies of vertices of G, call it V and V ′. For each edge (u, v) in G with probability 1/2 we
add edges (u, v) and (u′, v′) (parallel edges) and with probability 1/2 we add edges (u, v′) and (u′, v)
(crossing edges).

Let S correspond to a realization of 2-lift process define S(u, v) = 1 if u, v are parallel in H
and −1 otherwise. Also, define As be the matrix which is zero on non-edges and is equal to S(u, v)
on edges. Let Anew be adjacency matrix of graph after 2-lift process. And let λ(M) be the set of
eigenvalues of M. We will use the following fact without proof.

λ(Anew) = λ(A) ∪ λ(AS).

Note that maximum eigenvalue of As is maximum root of χAS
(x) = det(xI−AS). We will prove that

there exist realization of S ∈ {−1, 1}n so that maxroot(χAS
(x)) ≤ maxroot(Es∼{−1,1}n [χAS

(x)]).
Also, we will show Es∼{−1,1}n [χAS

(x)] = m(G). Then by corollary 12 we know that maxroot(m(G))

is at most 2
√
d− 1, and we are done.

First we show that Es∼{−1,1}n [χAS
(x)] = m(G). By definition using permutation definition of

determinant we have

Es∼{−1,1}n [χAS
(x)] =

∑
σ

(−1)sgn(σ)x#fixed pointsES [
∏

AS(i, σ(i))] = m(G).

Second equality is true because we know E(AS(u, v)) = 0 where u, v is an edge, so in the product
above we are just left with cycles if length 2 or matchings of size (n−#fixed points)/2.

Now, to prove maxroot(χAS
(x)) ≤ maxroot(Es∼{−1,1}n [χAS

(x)]) we define interlacing families.

Definition 17 (Polynomials with common interlacing) We say two polynomials p(x) and
q(x) have common interlacing if their degree differs at most 1 and if αi is i-th root of p(x) and βi
is i-th root of q then we have βi−1 ≤ αi ≤ βi and αi ≤ βi ≤ αi+1.

Definition 18 (Interlacing family) We say {PS}S∈{−1,1}m is an interlacing family if they can
be placed on leaves of tree, so that when every internal node is the average of its direct descendants
then sets of siblings have common interlacing.

We use the following theorem without proof.



Theorem 19 Let p(x), and q(x) be monic real-rooted polynomials. Then they have a common
interlacing if and only if λp(x) + (1− λ)q(x) is real-rooted for all λ ∈ [0, 1].

So if we prove that PS1,...,sk(x) = Esk+1,..,sn [χs1,...,sn(x)] are interlacing families, then we can start
from the root m(G) and derandomize toward the descendant that have the smaller maximum root
until we get to a leaf.

By Theorem 19 we simply need to show that for all k ≤ n, and all assignments of si, where
i ≤ k, the polynomial λPS1,...,sk,1(x) + (1− λ)PS1,...,sk,−1(x) is real-rooted for all λ ∈ [0, 1].

We will prove a stronger statement by showing that Esk+1,..,sn [χs1,...,sn(x)] is real-rooted for
every independent binomial distribution on s1, . . . , sk. This is the same as proving Es[Ps(x− d)] is
real-rooted. This is useful because we can write AS + dI as sum of familiar rank one matrices as
follow.

Let δu be the indicator vector of vertex u ∈ V .

δu(v) =

{
1 u = v

0 o.w.

Also, for each edge (u, v) define:

r(u,v) =

{
δu − δv with probability λ(u,v)

δu + δv with probability 1− λ(u,v)

Then we have:
As =

∑
u∼v

r(u,v)r
T
(u,v) − dI.

Hence we have,

Es[Ps(x)] = Es[det(xI − (dI +As)] = Es[det(xI −
∑
u∼v

r(u,v)r
T
(u,v)].

This polynomial is real-rooted using real-stability properties of polynomials. The proof idea is
that we can view this univariate polynomial as a restriction of a multivariate polynomial, and we
will show that it is a transformation of a real-stable polynomial that preserves stability.

Let Bi = E[rir
T
i ]. Then,

Es[det(xI −
∑
u∼v

r(u,v)r
T
(u,v)] =

m∏
i=1

(1− ∂

∂zi
)det(xI +

m∑
i=1

ziBi)).

And we know (1− ∂
∂zi

) preserves real-stability. So, we showed Ps1,...,sk are interlacing families and
the proof is complete. 2
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