MS\&E 319: Matching Theory Homework 1
 Due: May 1, 2019

Problem 1. Prove that the edges of a bipartite graph with maximum degree δ can be colored with δ colors such that no two edges that share a vertex have the same color.

Problem 2. A square matrix $\mathbf{A}=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is doubly stochastic if the entries of the matrix are nonnegative, and the sum of entries in every row and column is equal to one. The Birkhoff-von Neumann theorem states that one can write any doubly stochastic matrix as a convex combination of permutation matrices. Prove this theorem and show that we can write any doubly stochastic matrix as a convex combination of at most $n^{2}-n$ permutation matrices.

Problem 3. We have the following Theorem:
Theorem 1 Let G be a graph (not necessarily bipartite) and let M be a matching in G and let B be a blossom with respect to M. Then M is a maximum size matching in G if and only if M / B is a maximum size matching in G / B.

Give an example of a graph G, a matching M and a blossom B for M such that a maximum matching M^{*} in G / B does not lead to a maximum matching in G. Explain why this does not contradict Theorem 1.

Problem 4. (extra credit) A graph $G=(V, E)$ is said to be factor-critical if, for ll $v \in V$, we have that $G \backslash\{v\}$ contains a perfect matching. In parts (a) and (b) below, G is a factor critical graph.

1. Let U be any minimizer in the Tutte-Berge formula for G. Prove that $U=\emptyset$.
2. Deduce that when Edmonds algorithm terminates the final graph (obtained from G by shrinking flowers) must be a single vertex.
3. Given a graph $H=(V, E)$, an ear is a path $v_{0}-v_{1}-v_{2}-\ldots-v_{k}$ whose endpoints (v_{0} and v_{k}) are in V and whose internal vertices (v_{i} for $1 \leq i \leq k-1$) are not in V. We allow that v_{0} be equal to v_{k}, in which case the path would reduce to a cycle. Adding (a 'trivial' ear) simply means adding an edge to H. An ear is called odd if k is odd, and even otherwise; for example, a trivial ear is odd.
(a) Let G be a graph that can be constructed by starting from an odd cycle and repeatedly adding odd ears. Prove that G is factor-critical.
(b) Prove the converse that any factor-critical graph can be build by starting from an odd cycle and repeatedly adding odd ears.

Problem 5. A stable set S (sometimes, it is called also an independent set) in a graph $G=(V, E)$ is a set of vertices such that there are no edges between any two vertices in S. If we let P denote
the convex hull of all (incidence vectors of) stable sets of $G=(V, E)$, it is clear that $x_{i}+x_{j} \leq 1$ for any edge $(i, j) \in E$ is a valid inequality for P.

1. Give a graph G for which P is not equal to

$$
\begin{aligned}
\left\{x \in \mathbb{R}^{|V|}: x_{i}+x_{j}\right. & \leq 1 & & \text { for all }(i, j) \in E \\
x_{i} & \geq 0 & & \text { for all } i \in V\}
\end{aligned}
$$

2. Show that if the graph G is bipartite then P equals

$$
\begin{aligned}
\left\{x \in \mathbb{R}^{|V|}: x_{i}+x_{j}\right. & \leq 1 & & \text { for all }(i, j) \in E \\
x_{i} & \geq 0 & & \text { for all } i \in V\}
\end{aligned}
$$

