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In this lecture we first describe combinatorial approaches to finding a perfect matching. Next
we introduce the LP formulation and the polyhedral description of matchings and their connection.

1 Classic Combinatorial Results

First recap the Hall’s theorem that gives us a necessary and sufficient condition to see whether a
bipartite graph has a perfect matching.

Theorem 1 (Hall’s Theorem) A bipartite graph G(U, V,E), where |U | = |V | = n has a perfect
matching if and only if:

∀S ⊆ U, |N(S)| ≥ |S|.

where N(S) is the set of neighbors of vertices of S in V .

Definition 2 (Augmenting Path) A path v1, v2, . . . , v2k+1 is an augmenting path in G(V,E)
w.r.t matching M , if and only if:

• (vi, vi+1) ∈ E, 1 ≤ i ≤ 2k, and

• (v2i, v2i+1) ∈M, 1 ≤ i ≤ k, and v1, and v2k+1 are not matched.

Proposition 3 Either M is a maximum matching or there exists an augmenting path in G with
respect to M .

Proof: Suppose N is another matching, such that |N | > |M |. Consider the symmetric difference
of N and M . Each vertex is of degree 2, so the resulting graph is a union of even cycles and paths.
But, there are the same number of edges from M and N in each cycle and even-length path. Since,
|N | > |M | there must exist an odd path, such that its starting and ending edges are in N . This is
an augmenting path w.r.t M . 2

By the previous proposition, to find a maximum matching in a bipartite graph it is enough to start
with any matching and iteratively find an augmenting path in our graph and increase the size of
our matching by adding odd edges of the augmenting path to the matching and removing even
edges from it. Now, the question is how can we efficiently find augmenting paths?

Algorithm 1: Find an augmenting path

Direct edges in M from U to V ;
Direct edges in E \M from V to U ;
Add vertices s, t. Connect s to all unmatched vertices of V . Connect all unmatched vertices
of U to t;

Run BFS algorithm (find shortest path from s to t).

By construction of the directed graph in the algorithm, if there exists a path from s to t, there
exists an augmenting path. Looking at the tree produced at the last step of algorithm one can see
matchings and vertex covers are related in an interesting way.



Definition 4 (Vertex Cover) A set S ⊆ V is a vertex cover if for every (u, v) ∈ E, u ∈ S or
v ∈ S.

Lemma 5 If M is a matching and S is vertex cover then |S| ≥ |M |.

Proof: For a given vertex cover S, at least one side of each of M must be in S. So |S| ≥ |M |. 2

Theorem 6 If M∗ is a maximum matching in a bipartite graph G and S∗ is a min vertex cover
in G then |M∗| = |S∗|.

We leave the proof of this theorem as an exercise (Hint: use the tree found by the BFS in the
augmenting path algorithm).

2 Polyhedral Approaches

Assume the graph has a perfect matching. Can we find the matching by solving a linear program-
ming relaxation of the problem? Given a graph G(V,E) and a matching M , let XM ∈ R|E| be the
indicator vector of matching M :

XM
e =

{
1 e ∈M
0 otherwise

.

For a subset of vertices S, define the boundary as δ(S) = {e = (u, v)|e ∈ E, |{u, v}∩S| = 1}. With
abuse of notation we define δ(u) to be the set of edges incident to u.

2.1 Bipartite Graphs:

LP relaxation of matching problem in bipartite graphs can be written as:

maximize
∑
e∈E

Xewe (1)

s.t.
∑
e∈δ(v)

Xe = 1 ∀v ∈ V

Xe ≥ 0 ∀e ∈ E

Define the set PM as convex hull of XM for all perfect matchings and PLP as the set of all
possible fractional matchings. Formally:

PM = conv{XM |M is a perfect matching.}

PLP = {X|Xe ≥ 0 ∀e ∈ E,
∑
e∈δ(v)

Xe = 1 ∀v ∈ V }

The following claim proves that all the end points of polytope PLP are integral.



Claim 7 If G is a bipartite graph then PLP = PM .

Proof: The first direction is easy. Since each vector XM satisfies matching condition (
∑

e∈δ(v)Xe =
1), any convex combination of these vectors also satisfies the matching condition. Thus, PM ⊆ PLP .

For the second direction, we use proof by contradiction. Suppose PLP 6⊆ PM . Then PLP must
have a corner point that cannot be written as convex combination of perfect matchings. Let X be
such a corner point. Define

F = {e ∈ E|0 < xe < 1}.

If F is the empty set, then x is an integral perfect matfching. Otherwise, F must contain a cycle
of even length (since it’s bipartite). Let C be such an even cycle and ε be the minimum edge value
in this cycle. Let d = (..., ε, ...,−ε, ..., ε, ...,−ε) where ε and −ε appear in position of the edges in
C and the sign depends on the parity of the edge’s appearance around the cycle. One can see that
x+ d and x− d are both feasible solutions of PLM and x can be written as a convex combination
of x+ d and x− d. This contradicts x being a corner point of PLM .

2

2.2 Market Equilibrium Prices:

In this section we look at dual problem of LP 1. Let G(U, V,E) be the graph where U is the set of
buyers and V is the set of sellers. The primal LP formulation for maximum matching is:

maximize
∑
e∈E

Xewe

s.t.
∑
e∈δ(v)

Xe ≤ 1 ∀v ∈ V

∑
e∈δ(u)

Xe ≤ 1 ∀u ∈ U

Xe ≥ 0 ∀e ∈ E

Assign Si to constraints for vertices in U , and Pj for vertices in V , we got the following dual
problem:

minimize
∑
v∈V

Pv +
∑
u∈U

Su

s.t. Pv + Su ≥ w(u,v) ∀(u, v) ∈ E
Pv, Su ≥ 0

In the optimal matching, if buyer u is assigned to seller v, in other words Xu,v > 0, by com-
plimentary slackness condition we must have Su + Pv = w(u,v). Now, the question is what are the
market equilibrium prices (Pvs) that maximize the social welfare. The following auction algorithm



can do the work.

Algorithm 2: Finding equilibrium prices

Start with prices at 0;
while True do

Construct equality graph G in which u ∼ v if v ∈ argmaxk{wu,k − Pk};
Find maximum matching M in G;
if G has perfect matching then

We are done! Return the prices;
else

Find set S ∈ U s.t. |N(S)| < |S| (this set exists because of Hall’s theorem);
Increase prices of N(S) by a small constant c;
To avoid infinite prices, decrease all prices until minimum price is 0;

end

end

Claim 8 Algorithm 2 terminates.

Proof: Consider the objective value
∑

i Pi +
∑

j Sj . At each step we are decreasing this amount
by at least c(|S| − |N(S)|), so in general the amount

∑
i Pi +

∑
j Sj decreases at each step, until

we hit the optimal value. 2

2.3 General Graphs:

LP 1 does not have integer solution for general graphs. Consider a triangle with Xe = 1/2 for all
edges.

Exercise: Prove that corner points of PLP for general graphs are always half integral.
To get rid of triangle situation above we add either of the equivalent following constraints:∑

e∈S
Xe ≤ b

|S|
2
c, ∀S ⊆ V, |S| is odd,

or: ∑
e∈δS

Xe ≥ 1, ∀S ⊆ V, |S| is odd.

So, the LP relaxation is:

maximize
∑
e∈E

Xewe∑
e∈δ(v)

Xe = 1 ∀v ∈ V (2)

∑
e∈δ(S)

Xe ≥ 1, ∀S ⊆ V, |S| is odd (3)

X ≥ 0 (4)

Define PM as before and let PLP = {X|X satisfies (2), (3), (4)}.



Theorem 9 Let G be a graph that has a perfect matching, then PLP = PM .

Proof: Again PM ⊆ PLP is obvious. We prove the converse by induction on the number of edges.
The base |E| = 1 is obvious (since it induces a perfect matching itself). Assume PLP 6⊆ PM . Similar
to Claim 7 let X be a point in PLP that is not in PM and has the smallest support. Again, we can
assume every vertex has degree at least 2. If the graph contains an even cycle similar to proof of
Claim 7 we can reduce support size of X.

Now, assume there is no vertex of degree at least 3. So, the support graph is collection of odd
cycles. But this contradicts constraint 4. Therefore, some vertex has degree at least 3. Which
means |E| > |V |. Since X is a corner point we have at least |E| tight constraints. There are only
|V | constraints of type 2, so, |E| > |V | implies one of the tight constraints is of type 3. So, there
is a set S with odd cardinality, so that |S| ≥ 3 and∑

e∈δ(S)

Xe = 1, |S| is an odd number ≥ 3.

Now, let G′ and G′′ be the graph constructed from G by shrinking S and S = V \ S into one
single node v′ and v′′, respectively. Let X′, X′′ be defined by restricting X to edges in G′ and G′′,
respectively. Since,

∑
e∈δ(v)X

′
e =

∑
e∈δ(S)Xe = 1, X′ is a point in PLP for G′. The same is true

for X′′.
By the induction hypothesis, we can write X ′, and X ′′ as sum of sets of perfect matchings XM1

i
,

and XM2
j
, respectively. Let L be the common denominator:

X′ =
1

L

∑
i

XM1
i

X′′ =
1

L

∑
i

XM2
i
.

Since, X ′, and X ′′ have same values on δ(S), after multiplying by L, we can find one to one
correspondence between M1

i and some M2
i′ so that they use the same edge in δ(S). Let Mi be the

union of M1
i and M2

i′ . Then we have:

X =
1

L

∑
i

XMi .

2

Comments: LP formulation introduced for general graphs has exponentially many constraints,
however using separating oracle techniques one can find the solution in polynomial time.
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Figure 1: A graph that crossing edges sum to 1 (Left), Graph after shrinking vertices of S into one
single vertex (Right).
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